z-logo
Premium
Structuring of Hydrogels across Multiple Length Scales for Biomedical Applications
Author(s) -
Cooke Megan E.,
Jones Simon W.,
ter Horst Britt,
Moiemen Naiem,
Snow Martyn,
Chouhan Gurpreet,
Hill Lisa J.,
Esmaeli Maryam,
Moakes Richard J. A.,
Holton James,
Nandra Rajpal,
Williams Richard L.,
Smith Alan M.,
Grover Liam M.
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201705013
Subject(s) - structuring , materials science , self healing hydrogels , nanotechnology , scale (ratio) , computer science , finance , polymer chemistry , economics , physics , quantum mechanics
The development of new materials for clinical use is limited by an onerous regulatory framework, which means that taking a completely new material into the clinic can make translation economically unfeasible. One way to get around this issue is to structure materials that are already approved by the regulator, such that they exhibit very distinct physical properties and can be used in a broader range of clinical applications. Here, the focus is on the structuring of soft materials at multiple length scales by modifying processing conditions. By applying shear to newly forming materials, it is possible to trigger molecular reorganization of polymer chains, such that they aggregate to form particles and ribbon‐like structures. These structures then weakly interact at zero shear forming a solid‐like material. The resulting self‐healing network is of particular use for a range of different biomedical applications. How these materials are used to allow the delivery of therapeutic entities (cells and proteins) and as a support for additive layer manufacturing of larger‐scale tissue constructs is discussed. This technology enables the development of a range of novel materials and structures for tissue augmentation and regeneration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here