z-logo
Premium
Yolk–Shell Nanostructures: Design, Synthesis, and Biomedical Applications
Author(s) -
Lin LiSen,
Song Jibin,
Yang HuangHao,
Chen Xiaoyuan
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201704639
Subject(s) - template , nanotechnology , materials science , nanostructure , drug delivery , biomimetics , biosensor
Yolk–shell nanostructures (YSNs) composed of a core within a hollow cavity surrounded by a porous outer shell have received tremendous research interest owing to their unique structural features, fascinating physicochemical properties, and widespread potential applications. Here, a comprehensive overview of the design, synthesis, and biomedical applications of YSNs is presented. The synthetic strategies toward YSNs are divided into four categories, including hard‐templating, soft‐templating, self‐templating, and multimethod combination synthesis. For the hard‐ or soft‐templating strategies, different types of rigid or vesicle templates are used for making YSNs. For the self‐templating strategy, a number of unconventional synthetic methods without additional templates are introduced. For the multimethod combination strategy, various methods are applied together to produce YSNs that cannot be obtained directly by only a single method. The biomedical applications of YSNs including biosensing, bioimaging, drug/gene delivery, and cancer therapy are discussed in detail. Moreover, the potential superiority of YSNs for these applications is also highlighted. Finally, some perspectives on the future research and development of YSNs are provided.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here