Premium
Artificial Muscles: Mechanisms, Applications, and Challenges
Author(s) -
Mirvakili Seyed M.,
Hunter Ian W.
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201704407
Subject(s) - artificial muscle , materials science , actuator , electrostriction , nanotechnology , polymer , nanomaterials , elastomer , nanocomposite , biomimetic materials , fabrication , electroactive polymers , nanowire , smart material , piezoelectricity , carbon nanotube , shape memory alloy , composite material , computer science , alternative medicine , pathology , artificial intelligence , medicine
The area of artificial muscle is a highly interdisciplinary field of research that has evolved rapidly in the last 30 years. Recent advances in nanomaterial fabrication and characterization, specifically carbon nanotubes and nanowires, have had major contributions in the development of artificial muscles. However, what can artificial muscles really do for humans? This question is considered here by first examining nature's solutions to this design problem and then discussing the structure, actuation mechanism, applications, and limitations of recently developed artificial muscles, including highly oriented semicrystalline polymer fibers; nanocomposite actuators; twisted nanofiber yarns; thermally activated shape‐memory alloys; ionic‐polymer/metal composites; dielectric‐elastomer actuators; conducting polymers; stimuli‐responsive gels; piezoelectric, electrostrictive, magnetostrictive, and photostrictive actuators; photoexcited actuators; electrostatic actuators; and pneumatic actuators.