Premium
On‐Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics
Author(s) -
Lee Jihang,
Lu Wei D.
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201702770
Subject(s) - reconfigurability , materials science , neuromorphic engineering , control reconfiguration , nanotechnology , electronics , nanomaterials , semiconductor , smart material , resistive random access memory , computer science , engineering physics , electrical engineering , optoelectronics , embedded system , voltage , engineering , telecommunications , machine learning , artificial neural network
Rapid advances in the semiconductor industry, driven largely by device scaling, are now approaching fundamental physical limits and face severe power, performance, and cost constraints. Multifunctional materials and devices may lead to a paradigm shift toward new, intelligent, and efficient computing systems, and are being extensively studied. Herein examines how, by controlling the internal ion distribution in a solid‐state film, a material's chemical composition and physical properties can be reversibly reconfigured using an applied electric field, at room temperature and after device fabrication. Reconfigurability is observed in a wide range of materials, including commonly used dielectric films, and has led to the development of new device concepts such as resistive random‐access memory. Physical reconfigurability further allows memory and logic operations to be merged in the same device for efficient in‐memory computing and neuromorphic computing systems. By directly changing the chemical composition of the material, coupled electrical, optical, and magnetic effects can also be obtained. A survey of recent fundamental material and device studies that reveal the dynamic ionic processes is included, along with discussions on systematic modeling efforts, device and material challenges, and future research directions.