Premium
Robust Fe 3 Mo 3 C Supported IrMn Clusters as Highly Efficient Bifunctional Air Electrode for Metal–Air Battery
Author(s) -
Cui Zhiming,
Li Yutao,
Fu Gengtao,
Li Xiang,
Goodenough John B.
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201702385
Subject(s) - catalysis , bifunctional , materials science , cathode , carbide , electrolyte , battery (electricity) , chemical engineering , metal , inorganic chemistry , molybdenum , electrode , metallurgy , chemistry , organic chemistry , power (physics) , physics , quantum mechanics , engineering
Catalysts at the air cathode for oxygen reduction and evolution reactions are central to the stability of rechargeable metal–air batteries, an issue that is gaining increasing interest in recent years. Herein, a highly durable and efficient carbide‐based bifunctional catalyst consisting of iron–molybdenum carbide (Fe 3 Mo 3 C) and IrMn nanoalloys is demonstratred. This carbide is chemically stable in alkaline media and over the potential range of an air cathode. More importantly, Fe 3 Mo 3 C is very active for oxygen reduction reaction (ORR) in alkaline media. Fe 3 Mo 3 C supported IrMn as a bifunictional catalysts exhibits superior catalytic performance than the state of the art ORR catalyst (Pt/C) and the oxygen evolution reaction catalyst (Ir/C). IrMn/Fe 3 Mo 3 C enables Zn–air batteries to achieve long‐term cycling performance over 200 h with high efficiency. The extraordinarily high performance of IrMn/Fe 3 Mo 3 C bifunictional catalyst provides a very promising alternative to the conventional Pt/C and Ir/C catalyst for an air cathode in alkaline electrolyte.