z-logo
Premium
Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance
Author(s) -
Zhao Lei,
Liu Qing,
Gao Jing,
Zhang Shujun,
Li JingFeng
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201701824
Subject(s) - materials science , antiferroelectricity , dielectric , ferroelectricity , energy storage , ceramic , tantalate , optoelectronics , composite material , thermodynamics , power (physics) , physics
Antiferroelectric materials that display double ferroelectric hysteresis loops are receiving increasing attention for their superior energy storage density compared to their ferroelectric counterparts. Despite the good properties obtained in antiferroelectric La‐doped Pb(Zr,Ti)O 3 ‐based ceramics, lead‐free alternatives are highly desired due to the environmental concerns, and AgNbO 3 has been highlighted as a ferrielectric/antiferroelectric perovskite for energy storage applications. Enhanced energy storage performance, with recoverable energy density of 4.2 J cm −3 and high thermal stability of the energy storage density (with minimal variation of ≤±5%) over 20–120 °C, can be achieved in Ta‐modified AgNbO 3 ceramics. It is revealed that the incorporation of Ta to the Nb site can enhance the antiferroelectricity because of the reduced polarizability of B‐site cations, which is confirmed by the polarization hysteresis, dielectric tunability, and selected‐area electron diffraction measurements. Additionally, Ta addition in AgNbO 3 leads to decreased grain size and increased bulk density, increasing the dielectric breakdown strength, up to 240 kV cm −1 versus 175 kV cm −1 for the pure counterpart, together with the enhanced antiferroelectricity, accounting for the high energy storage density.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here