z-logo
Premium
Amino‐Mediated Anchoring Perovskite Quantum Dots for Stable and Low‐Threshold Random Lasing
Author(s) -
Li Xiaoming,
Wang Yue,
Sun Handong,
Zeng Haibo
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201701185
Subject(s) - materials science , quantum dot , perovskite (structure) , anchoring , lasing threshold , optoelectronics , nanotechnology , chemical engineering , wavelength , engineering , structural engineering
Halide perovskite quantum dots (Pe‐QDs) have been considered as outstanding candidates for photodetector, light‐emitting diode, and lasing applications, but these perspectives are being impeded by the severe stability, including both chemical and optical degradations. This study reports on amino‐mediated anchoring Pe‐QDs onto the surfaces of monodisperse silica to effectively depress the optical degradation of their photoluminescence (PL) and random lasing stabilities, hence achieving highly stable and low‐threshold lasing. An amination‐mediated nucleation and growth process is designed for the general and one‐pot synthesis of Pe‐QDs on the surfaces of silica spheres. The facile synthetic process, which can be finished within several minutes, insures scalable production. Surprisingly, almost no PL degradation is observed after 40 d storage under ambient conditions, even 80% PL intensity can be maintained after persistently illuminated by UV lamps for 108 h. Subsequently, extremely stable random lasing is achieved after storage for 2 months or over continuously optical pumping for 8 h. Such high PL and lasing stabilities originate from the isolation effects due to the effective anchoring, which separate the Pe‐QDs from each other and inhibit the photoinduced regrowth and deterioration. This work will also open the window of perovskite‐based multifunctional systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here