Premium
Ultrastable Near‐Infrared Conjugated‐Polymer Nanoparticles for Dually Photoactive Tumor Inhibition
Author(s) -
Yang Tao,
Liu Ling,
Deng Yibin,
Guo Zhengqing,
Zhang Guobing,
Ge Zhishen,
Ke Hengte,
Chen Huabing
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201700487
Subject(s) - intersystem crossing , singlet oxygen , materials science , photochemistry , photothermal therapy , nanoparticle , conjugated system , photobleaching , photosensitizer , polymer , singlet state , nanotechnology , fluorescence , excited state , chemistry , oxygen , organic chemistry , optics , physics , nuclear physics , composite material
It is highly desired that satisfactory photoactive agents with ideal photophysical characteristics are explored for potent cancer phototherapeutics. Herein, bifunctional nanoparticles of low‐bandgap donor–acceptor (D–A)‐type conjugated‐polymer nanoparticles (CP‐NPs) are developed to afford a highly efficient singlet‐to‐triplet transition and photothermal conversion for near‐infrared (NIR) light‐induced photodynamic (PDT)/photothermal (PTT) treatment. CP‐NPs display remarkable NIR absorption with the peak at 782 nm, and perfect resistance to photobleaching. Photoexcited CP‐NPs undergo singlet‐to‐triplet intersystem crossing through charge transfer in the excited D–A system and simultaneous nonradiative decay from the electron‐deficient electron acceptor isoindigo derivative under single‐wavelength NIR light irradiation, leading to distinct singlet oxygen quantum yield and high photothermal conversion efficiency. Moreover, the CP‐NPs display effective cellular uptake and cytoplasmic translocation from lysosomes, as well as effective tumor accumulation, thus promoting severe light‐triggered damage caused by favorable reactive oxygen species (ROS) generation and potent hyperthermia. Thus, CP‐NPs achieve photoactive cell damage through their photoconversion ability for synergistic PDT/PTT treatment with tumor ablation. The proof‐of‐concept design of D–A‐type conjugated‐polymer nanoparticles with ideal photophysical characteristics provides a general approach to afford potent photoactive cancer therapy.