z-logo
Premium
Mushrooms as Efficient Solar Steam‐Generation Devices
Author(s) -
Xu Ning,
Hu Xiaozhen,
Xu Weichao,
Li Xiuqiang,
Zhou Lin,
Zhu Shining,
Zhu Jia
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201606762
Subject(s) - materials science , solar energy , desalination , process engineering , nanotechnology , engineering , electrical engineering , chemistry , biochemistry , membrane
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam‐generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella‐shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low‐cost materials for solar steam generation, but also provide inspiration for the future development of high‐performance solar thermal conversion devices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here