Premium
Nanocube Superlattices of Cesium Lead Bromide Perovskites and Pressure‐Induced Phase Transformations at Atomic and Mesoscale Levels
Author(s) -
Nagaoka Yasutaka,
HillsKimball Katie,
Tan Rui,
Li Ruipeng,
Wang Zhongwu,
Chen Ou
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201606666
Subject(s) - materials science , perovskite (structure) , photoluminescence , halide , superlattice , caesium , phase (matter) , chemical physics , optoelectronics , crystallography , inorganic chemistry , chemistry , organic chemistry
Lead halide perovskites are promising materials for a range of applications owing to their unique crystal structure and optoelectronic properties. Understanding the relationship between the atomic/mesostructures and the associated properties of perovskite materials is crucial to their application performances. Herein, the detailed pressure processing of CsPbBr 3 perovskite nanocube superlattices (NC‐SLs) is reported for the first time. By using in situ synchrotron‐based small/wide angle X‐ray scattering and photoluminescence (PL) probes, the NC‐SL structural transformations are correlated at both atomic and mesoscale levels with the band‐gap evolution through a pressure cycle of 0 ↔ 17.5 GPa. After the pressurization, the individual CsPbBr 3 NCs fuse into 2D nanoplatelets (NPLs) with a uniform thickness. The pressure‐synthesized perovskite NPLs exhibit a single cubic crystal structure, a 1.6‐fold enhanced photoluminescence quantum yield, and a longer emission lifetime than the starting NCs. This study demonstrates that pressure processing can serve as a novel approach for the rapid conversion of lead halide perovskites into structures with enhanced properties.