Premium
Tweezing of Magnetic and Non‐Magnetic Objects with Magnetic Fields
Author(s) -
Timonen Jaakko V. I.,
Grzybowski Bartosz A.
Publication year - 2017
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201603516
Subject(s) - microfabrication , magnetic tweezers , tweezers , materials science , magnetic field , magnetic nanoparticles , nanotechnology , optical tweezers , nanoparticle , physics , fabrication , optics , medicine , alternative medicine , pathology , quantum mechanics
Although strong magnetic fields cannot be conveniently “focused” like light, modern microfabrication techniques enable preparation of microstructures with which the field gradients – and resulting magnetic forces – can be localized to very small dimensions. This ability provides the foundation for magnetic tweezers which in their classical variant can address magnetic targets. More recently, the so‐called negative magnetophoretic tweezers have also been developed which enable trapping and manipulations of completely nonmagnetic particles provided that they are suspended in a high‐magnetic‐susceptibility liquid. These two modes of magnetic tweezing are complimentary techniques tailorable for different types of applications. This Progress Report provides the theoretical basis for both modalities and illustrates their specific uses ranging from the manipulation of colloids in 2D and 3D, to trapping of living cells, control of cell function, experiments with single molecules, and more.