z-logo
Premium
Bioinspired Graphene‐Based Nanocomposites and Their Application in Flexible Energy Devices
Author(s) -
Wan Sijie,
Peng Jingsong,
Jiang Lei,
Cheng Qunfeng
Publication year - 2016
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201601934
Subject(s) - graphene , materials science , nanocomposite , nanotechnology , toughness , composite material
Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro‐sized high‐performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two‐dimensional nanosheets into high‐performance nanocomposites. This review summarizes recent research on the bioinspired graphene‐based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high‐strength and ‐toughness graphene‐based nanocomposites through various synergistic effects. Fundamental properties of graphene‐based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here