Premium
Nanoscale Transformations in Metastable, Amorphous, Silicon‐Rich Silica
Author(s) -
Mehonic Adnan,
Buckwell Mark,
Montesi Luca,
Munde Manveer Singh,
Gao David,
Hudziak Stephen,
Chater Richard J.,
Fearn Sarah,
McPhail David,
Bosman Michel,
Shluger Alexander L.,
Kenyon Anthony J.
Publication year - 2016
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201601208
Subject(s) - materials science , metastability , amorphous solid , nanoscopic scale , silicon , nanotechnology , amorphous silicon , oxide , ion , amorphous silica , biasing , silicon oxide , range (aeronautics) , chemical physics , chemical engineering , crystalline silicon , optoelectronics , voltage , crystallography , composite material , metallurgy , organic chemistry , chemistry , engineering , physics , silicon nitride , quantum mechanics
Electrically biasing thin films of amorphous, substoichiometric silicon oxide drives surprisingly large structural changes, apparent as density variations, oxygen movement, and ultimately, emission of superoxide ions. Results from this fundamental study are directly relevant to materials that are increasingly used in a range of technologies, and demonstrate a surprising level of field‐driven local reordering of a random oxide network.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom