Premium
Nanoarchitectonics for Dynamic Functional Materials from Atomic‐/Molecular‐Level Manipulation to Macroscopic Action
Author(s) -
Ariga Katsuhiko,
Li Junbai,
Fei Jinbo,
Ji Qingmin,
Hill Jonathan P.
Publication year - 2016
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201502545
Subject(s) - nanotechnology , supramolecular chemistry , materials science , molecular machine , supramolecular chirality , molecular self assembly , molecular recognition , dna origami , nanolithography , self assembly , nanostructure , molecule , fabrication , chemistry , organic chemistry , medicine , alternative medicine , pathology
Objects in all dimensions are subject to translational dynamism and dynamic mutual interactions, and the ability to exert control over these events is one of the keys to the synthesis of functional materials. For the development of materials with truly dynamic functionalities, a paradigm shift from “nanotechnology” to “nanoarchitectonics” is proposed, with the aim of design and preparation of functional materials through dynamic harmonization of atomic‐/molecular‐level manipulation and control, chemical nanofabrication, self‐organization, and field‐controlled organization. Here, various examples of dynamic functional materials are presented from the atom/molecular‐level to macroscopic dimensions. These systems, including atomic switches, molecular machines, molecular shuttles, motional crystals, metal–organic frameworks, layered assemblies, gels, supramolecular assemblies of biomaterials, DNA origami, hollow silica capsules, and mesoporous materials, are described according to their various dynamic functions, which include short‐term plasticity, long‐term potentiation, molecular manipulation, switchable catalysis, self‐healing properties, supramolecular chirality, morphological control, drug storage and release, light‐harvesting, mechanochemical transduction, molecular tuning molecular recognition, hand‐operated nanotechnology.