Premium
Transport Properties of Hybrids with Ferromagnetic MnAs Nanoclusters and Their Potential for New Magnetoelectronic Devices
Author(s) -
Elm Matthias T.,
Hara Shinjiro
Publication year - 2014
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201403136
Subject(s) - nanoclusters , spintronics , materials science , ferromagnetism , condensed matter physics , nanotechnology , semiconductor , magnetic semiconductor , optoelectronics , physics
Granular hybrid structures containing ferromagnetic nanoclusters embedded in a semiconducting matrix are an interesting class of materials as their properties can be tuned in a wide range. Hybrids are a promising alternative to dilute magnetic semiconductors in the field of spintronics and magnetoelectronics, because the nanoclusters can show ferromagnetic behavior even at room temperature. In this review, it is focused on the rather well investigated dilute magnetic semiconductor (Ga,Mn)As with MnAs inclusions. Different preparation methods are presented which were developed over the last two decades in order to obtain MnAs nanoclusters in the semiconducting matrix and to tune the structural and magnetic properties of these clusters. Recent results on the influence of the nanoclusters on the hybrids' transport properties as well as first approaches to use hybrids with a random nanocluster distribution in new spintronic devices are discussed. In addition, the perspective of using single MnAs nanoclusters as well as ordered arrangements of a few nanoclusters in new planar magnetoelectronic devices is illustrated.