Premium
Near‐Surface Spectrally Stable Nitrogen Vacancy Centres Engineered in Single Crystal Diamond
Author(s) -
Stacey Alastair,
Simpson David A.,
Karle Timothy J.,
Gibson Brant C.,
Acosta Victor M.,
Huang Zhihong,
Fu Kai Mei C.,
Santori Charles,
Beausoleil Raymond G.,
McGuinness Liam P.,
Ganesan Kumaravelu,
TomljenovicHanic Snjezana,
Greentree Andrew D.,
Prawer Steven
Publication year - 2012
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201201074
Subject(s) - laser linewidth , diamond , vacancy defect , materials science , photoluminescence , fabrication , optoelectronics , quantum information processing , scalability , spin (aerodynamics) , nanotechnology , quantum , computer science , condensed matter physics , optics , physics , composite material , medicine , laser , alternative medicine , pathology , quantum mechanics , database , thermodynamics
A method for engineering thin (<100 nm) layers of homoepitaxial diamond containing high quality, spectrally stable, isolated nitrogen‐vacancy (NV) centres is reported. The photoluminescence excitation linewidth of the engineered NVs are as low as 140 MHz, at temperatures below 12 K, while the spin properties are at a level suitable for quantum memory and spin register applications. This methodology of NV fabrication is an important step toward scalable and practical diamond based photonic devices suitable for quantum information processing.