z-logo
Premium
Bio‐microfluidics: Biomaterials and Biomimetic Designs
Author(s) -
Domachuk Peter,
Tsioris Konstantinos,
Omenetto Fiorenzo G.,
Kaplan David L.
Publication year - 2010
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.200900821
Subject(s) - microfluidics , nanotechnology , self healing hydrogels , materials science , microtechnology , biomimetics , microfabrication , biofabrication , fluidics , biocompatibility , tissue engineering , fabrication , biomedical engineering , engineering , medicine , alternative medicine , pathology , aerospace engineering , polymer chemistry , metallurgy
Bio‐microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub‐micrometer scale, offer applications ranging from lab‐on‐a‐chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio‐microfluidic materials, designs and applications are examined. Biopolymers enable bio‐microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio‐microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self‐regulating valves, microlens arrays and drug release systems, vital for integrated bio‐microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio‐related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here