Premium
Inorganic Nanoparticles for MRI Contrast Agents
Author(s) -
Na Hyon Bin,
Song In Chan,
Hyeon Taeghwan
Publication year - 2009
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.200802366
Subject(s) - nanoparticle , materials science , mri contrast agent , contrast (vision) , magnetic resonance imaging , iron oxide nanoparticles , nanotechnology , iron oxide , superparamagnetism , nuclear magnetic resonance , computer science , medicine , magnetization , radiology , magnetic field , physics , quantum mechanics , metallurgy , artificial intelligence
Various inorganic nanoparticles have been used as magnetic resonance imaging (MRI) contrast agents due to their unique properties, such as large surface area and efficient contrasting effect. Since the first use of superparamagnetic iron oxide (SPIO) as a liver contrast agent, nanoparticulate MRI contrast agents have attracted a lot of attention. Magnetic iron oxide nanoparticles have been extensively used as MRI contrast agents due to their ability to shorten T2* relaxation times in the liver, spleen, and bone marrow. More recently, uniform ferrite nanoparticles with high crystallinity have been successfully employed as new T2 MRI contrast agents with improved relaxation properties. Iron oxide nanoparticles functionalized with targeting agents have been used for targeted imaging via the site‐specific accumulation of nanoparticles at the targets of interest. Recently, extensive research has been conducted to develop nanoparticle‐based T1 contrast agents to overcome the drawbacks of iron oxide nanoparticle‐based negative T2 contrast agents. In this report, we summarize the recent progress in inorganic nanoparticle‐based MRI contrast agents.