Premium
Polymers Move in Response to Light
Author(s) -
Jiang H. Y.,
Kelch S.,
Lendlein A.
Publication year - 2006
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.200502266
Subject(s) - azobenzene , materials science , polymer , elastomer , shape memory alloy , shape memory polymer , bending , nanotechnology , surface modification , composite material , chemical engineering , engineering
Significant advances have recently been made in the development of functional polymers that are able to undergo light‐induced shape changes. The main challenge in the development of such polymer systems is the conversion of photoinduced effects at the molecular level to macroscopic movement of working pieces. This article highlights some selected polymer architectures and their tailored functionalization processes. Examples include the contraction and bending of azobenzene‐containing liquid‐crystal elastomers and volume changes in gels. We focus especially on light‐induced shape‐memory polymers. These materials can be deformed and temporarily fixed in a new shape. They only recover their original, permanent shape when irradiated with light of appropriate wavelengths. Using light as a trigger for the shape‐memory effect will extend the applications of shape‐memory polymers, especially in the field of medical devices where triggers other than heat are highly desirable.