Premium
Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells
Author(s) -
Liu Y.,
Summers M. A.,
Edder C.,
Fréchet J. M. J.,
McGehee M. D.
Publication year - 2005
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.200501307
Subject(s) - exciton , materials science , photocurrent , photovoltaic system , resonance (particle physics) , polymer , band gap , optoelectronics , energy transfer , chemical physics , photochemistry , atomic physics , condensed matter physics , chemistry , physics , ecology , composite material , biology
The effective exciton diffusion length of poly(3‐hexylthiophene) (P3HT) can be improved with resonance‐energy transfer from P3HT to poly( N ‐dodecyl‐2,5‐bis(2'‐thienyl)pyrrole‐2,1,3‐benzothiadiazole) (PTPTB), a low‐bandgap polymer, which results in a threefold increase of the photocurrent. Directional resonance energy transfer to the exciton‐splitting interface has the potential to overcome a number of limitations associated with exciton transport in polymer photovoltaic cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom