Premium
Using Resonance Energy Transfer to Improve Exciton Harvesting in Organic–Inorganic Hybrid Photovoltaic Cells
Author(s) -
Liu Y.,
Summers M. A.,
Edder C.,
Fréchet J. M. J.,
McGehee M. D.
Publication year - 2005
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.200501307
Subject(s) - exciton , materials science , photocurrent , photovoltaic system , resonance (particle physics) , polymer , band gap , optoelectronics , energy transfer , chemical physics , photochemistry , atomic physics , condensed matter physics , chemistry , physics , ecology , composite material , biology
The effective exciton diffusion length of poly(3‐hexylthiophene) (P3HT) can be improved with resonance‐energy transfer from P3HT to poly( N ‐dodecyl‐2,5‐bis(2'‐thienyl)pyrrole‐2,1,3‐benzothiadiazole) (PTPTB), a low‐bandgap polymer, which results in a threefold increase of the photocurrent. Directional resonance energy transfer to the exciton‐splitting interface has the potential to overcome a number of limitations associated with exciton transport in polymer photovoltaic cells.