Premium
Dielectric Elastomer Actuators, Neuromuscular Interfaces, and Foreign Body Response in Artificial Neuromuscular Prostheses: A Review of the Literature for an In Vivo Application
Author(s) -
Bruschi Alessandro,
Donati Davide Maria,
Choong Peter,
Lucarelli Enrico,
Wallace Gordon
Publication year - 2021
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.202100041
Subject(s) - artificial muscle , materials science , elastomer , biomedical engineering , neuromuscular junction , medicine , actuator , computer science , neuroscience , biology , artificial intelligence , composite material
The inability to replace human muscle in surgical practice is a significant challenge. An artificial muscle controlled by the nervous system is considered a potential solution for this. Here, this is defined as a neuromuscular prosthesis. Muscle loss and dysfunction related to musculoskeletal oncological impairments, neuromuscular diseases, trauma or spinal cord injuries can be treated through artificial muscle implantation. At present, the use of dielectric elastomer actuators working as capacitors appears a promising option. Acrylic or silicone elastomers with carbon nanotubes functioning as the electrode achieve mechanical performances similar to human muscle in vitro. However, mechanical, electrical, and biological issues have prevented clinical application to date. Here materials and mechatronic solutions are presented which can tackle current clinical problems associated with implanting an artificial muscle controlled by the nervous system. Progress depends on the improvement of the actuation properties of the elastomer, seamless or wireless integration between the nervous system and the artificial muscle, and on reducing the foreign body response. It is believed that by combining the mechanical, electrical, and biological solutions proposed here, an artificial neuromuscular prosthesis may be a reality in surgical practice in the near future.