z-logo
Premium
A Catheter‐Deployable Soft Robotic Inflatable Basket for Enhanced Conformability to the Left Atrium of the Heart
Author(s) -
Farokhnia Nazanin,
Caprio Alexandre,
Kashyap Varun,
Al'Aref Subhi,
Baskaran Lohendran,
Mosadegh Bobak,
Dunham Simon
Publication year - 2020
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201900951
Subject(s) - inflatable , biomedical engineering , soft robotics , 3d printed , computer science , materials science , 3d printer , artificial intelligence , robot , mechanical engineering , engineering
This paper presents the design, fabrication, and test results for a novel basket catheter that utilizes soft robotic technology, which can conform to complex patient anatomy. Two designs of basket‐shaped balloons in three sizes are fabricated based on a CO 2 laser cutting method from thin (<50 µm) thermoplastic polyurethane. The balloons are deployed in four soft‐material 3D printed left atria, whose geometries are based on volume rendered segmentation of cardiac computed tomography (CT) scans. The coverage and conformability to the realistic patient anatomies is tracked with the small patches of pH paper that indicate, via a color change, contact with a basic solution that lined the 3D printed atriums. The conformability of these inflatable basket catheters is demonstrated as high as (85%) for the optimized design. To visualize the balloon's performance, microCT images of balloons deployed in 3D printed models are shown. These images show the ability of the balloons to adapt to complex patient anatomy and do not exhibit any spline bunching or other deleterious mechanical behavior. This platform has the potential to be coupled with electrical sensors for simultaneous multisensor mapping of atrial fibrillation and other cardiac arrhythmias.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here