Premium
Linkage Groups within Thiol–Ene Photoclickable PEG Hydrogels Control In Vivo Stability
Author(s) -
Hunckler Michael D.,
Medina Juan D.,
Coronel Maria M.,
Weaver Jessica D.,
Stabler Cherie L.,
García Andrés J.
Publication year - 2019
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201900371
Subject(s) - self healing hydrogels , peg ratio , ethylene glycol , in vivo , norbornene , materials science , ene reaction , thiol , biophysics , chemistry , polymer chemistry , organic chemistry , polymer , copolymer , biology , microbiology and biotechnology , finance , economics
Thiol–norbornene (thiol–ene) photoclickable poly(ethylene glycol) (PEG) hydrogels are a versatile biomaterial for cell encapsulation, drug delivery, and regenerative medicine. Numerous in vitro studies with these 4‐arm ester‐linked PEG‐norbornene (PEG‐4eNB) hydrogels demonstrate robust cytocompatibility and ability to retain long‐term integrity with nondegradable crosslinkers. However, when transplanted in vivo into the subcutaneous or intraperitoneal space, these PEG‐4eNB hydrogels with nondegradable crosslinkers rapidly degrade within 24 h. This characteristic limits the usefulness of PEG‐4eNB hydrogels in biomedical applications. Replacing the ester linkage with an amide linkage (PEG‐4aNB) mitigates this rapid in vivo degradation, and the PEG‐4aNB hydrogels maintain long‐term in vivo stability for months. Furthermore, when compared to PEG‐4eNB, the PEG‐4aNB hydrogels demonstrate equivalent mechanical properties, crosslinking kinetics, and high cytocompatibility with rat islets and human mesenchymal stem cells. Thus, the PEG‐4aNB hydrogels may be a suitable replacement platform without necessitating critical design changes or sacrificing key properties relevant to the well‐established PEG‐4eNB hydrogels.