Premium
High Modulus Conductive Hydrogels Enhance In Vitro Maturation and Contractile Function of Primary Cardiomyocytes for Uses in Drug Screening
Author(s) -
Wu Fengxin,
Gao Aijun,
Liu Jian,
Shen Yaoyi,
Xu Panpan,
Meng Jie,
Wen Tao,
Xu Lianghua,
Xu Haiyan
Publication year - 2018
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201800990
Subject(s) - materials science , microbiology and biotechnology , in vitro , pharmacology , biomedical engineering , biology , medicine , biochemistry
Effective and quick screening and cardiotoxicity assessment are very crucial for drug development. Here, a novel composite hydrogel composed of carbon fibers (CFs) with high conductivity and modulus with polyvinyl alcohol (PVA) is reported. The conductivity of the composite hydrogel PVA/CFs is similar to that of natural heart tissue, and the elastic modulus is close to that of natural heart tissue during systole, due to the incorporation of CFs. PVA/CFs remarkably enhance the maturation of neonatal rat cardiomyocytes (NRCM) in vitro by upregulating the expression of α‐actinin, troponin T, and connexin‐43, activating the signaling pathway of α5 and β1 integrin‐dependent ILK/p‐AKT, and increasing the level of RhoA and hypoxia‐inducible factor‐1α. As a result, the engineered cell sheet–like constructs NRCM@PVA/CFs display much more synchronous, stable, and robust beating behavior than NRCM@PVA. When exposed to doxorubicin or isoprenaline, NRCM@PVA/CFs can retain effective beating for much longer time or change the contractile rate much faster than NRCM@PVA, respectively, therefore representing a promising heart‐like platform for in vitro drug screening and cardiotoxicity assessment.