Premium
Monolithic and Scalable Au Nanorod Substrates Improve PEDOT–Metal Adhesion and Stability in Neural Electrodes
Author(s) -
Ganji Mehran,
Hossain Lorraine,
Tanaka Atsunori,
Thunemann Martin,
Halgren Eric,
Gilja Vikash,
Devor Anna,
Dayeh Shadi A.
Publication year - 2018
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201800923
Subject(s) - pedot:pss , materials science , cyclic voltammetry , conductive polymer , nanorod , microelectrode , electrode , nanotechnology , spin coating , layer (electronics) , chemical engineering , composite material , coating , electrochemistry , polymer , chemistry , engineering
Poly(3,4‐ethylenenedioxythiophene) or PEDOT is a promising candidate for next‐generation neuronal electrode materials but its weak adhesion to underlying metallic conductors impedes its potential. An effective method of mechanically anchoring the PEDOT within an Au nanorod (Au‐nr) structure is reported and it is demonstrated that it provides enhanced adhesion and overall PEDOT layer stability. Cyclic voltammetry (CV) stress is used to investigate adhesion and stability of spin‐cast and electrodeposited PEDOT. The Au‐nr adhesion layer permits 10 000 CV cycles of coated PEDOT film in phosphate buffered saline solution without delamination nor significant change of the electrochemical impedance, whereas PEDOT coating film on planar Au electrodes delaminates at or below 1000 cycles. Under CV stress, spin‐cast PEDOT on planar Au delaminates, whereas electroplated PEDOT on planar Au encounters surface leaching/decomposition. After 5 weeks of accelerated aging tests at 60 °C, the electrodeposited PEDOT/Au‐nr microelectrodes demonstrate a 92% channel survival compared to only 25% survival for spin‐cast PEDOT on planar films. Furthermore, after a 10 week chronic implantation onto mouse barrel cortex, PEDOT/Au‐nr microelectrodes do not exhibit delamination nor morphological changes, whereas the conventional PEDOT microelectrodes either partially or fully delaminate. Immunohistochemical evaluation demonstrates no or minimal response to the PEDOT implant.