Premium
Biomechanical Regulation of Mesenchymal Stem Cells for Cardiovascular Tissue Engineering
Author(s) -
Henderson Kayla,
Sligar Andrew D.,
Le Victoria P.,
Lee Jason,
Baker Aaron B.
Publication year - 2017
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201700556
Subject(s) - mesenchymal stem cell , phenotype , tissue engineering , stem cell , vascular tissue , medicine , microbiology and biotechnology , pathology , biomedical engineering , biology , biochemistry , botany , gene
Mesenchymal stem cells (MSCs) are an appealing potential therapy for vascular diseases; however, many challenges remain in their clinical translation. While the use of biochemical, pharmacological, and substrate‐mediated treatments to condition MSCs has been subjected to intense investigation, there has been far less exploration of using these treatments in combination with applied mechanical force for conditioning MSCs toward vascular phenotypes. This review summarizes the current understanding of the use of applied mechanical forces to differentiate MSCs into vascular cells and enhance their therapeutic potential for cardiovascular disease. First recent work on the use of material‐based mechanical cues for differentiation of MSCs into vascular and cardiovascular phenotypes is examined. Then a summary of the studies using mechanical stretch or shear stress in combination with biochemical treatments to enhance vascular phenotypes in MSCs is presented.