z-logo
Premium
3D Tissue Formation of Unilocular Adipocytes in Hydrogel Microfibers
Author(s) -
Hsiao Amy Y.,
Okitsu Teru,
Teramae Hiroki,
Takeuchi Shoji
Publication year - 2016
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201500673
Subject(s) - microfiber , materials science , biomedical engineering , microbiology and biotechnology , anatomy , biophysics , composite material , medicine , biology
Adipose tissue, an active metabolic and endocrine organ mainly composed of unilocular adipocytes, is implicated in various obesity related diseases. Developing morphologically and functionally accurate in vitro models of the adipose tissue is therefore critically important for basic biological studies, drug screening/testing, and clinical implants to advance the understanding and treatment of these diseases. However, current adipose tissue engineering technologies either cannot replicate the unilocular morphologies of mature adipocytes, or lack the ease of monitoring, handling, and scaling up required in the above mentioned applications. This paper presents the differentiation of adipose derived stem cells (ADSCs) to mature adipocytes in highly observable and highly handleable 3D fiber shaped constructs exhibiting morphologies and functions of native adipose tissues. Using the cell fiber technology, ADSCs were encapsulated in hydrogel microfibers, allowed to form into fiber shaped constructs, and differentiated to mature unilocular adipocytes. These adipocyte fibers are observed and maintained for up to 91 d, and secretion of adipose tissue‐specific factor, adiponectin, is further confirmed. The handleability of the adipocyte fibers is demonstrated by assembling the adipocyte fibers into doll shaped constructs. Such highly observable, highly handleable, and scalable characteristics of the adipocyte fibers make them suitable for biological studies, high‐throughput drug screening/testing, and clinical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here