Premium
Micro and Nanoparticle‐Based Delivery Systems for Vaccine Immunotherapy: An Immunological and Materials Perspective
Author(s) -
Leleux Jardin,
Roy Krishnendu
Publication year - 2013
Publication title -
advanced healthcare materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.288
H-Index - 90
eISSN - 2192-2659
pISSN - 2192-2640
DOI - 10.1002/adhm.201200268
Subject(s) - immune system , measles , vaccination , immunotherapy , medicine , immunology , nanotechnology , materials science
Abstract The development and widespread application of vaccines has been one of the most significant achievements of modern medicine. Vaccines have not only been instrumental in controlling and even eliminating life‐threatening diseases like polio, measles, diphtheria, etc., but have also been immensely powerful in enhancing the worldwide outlook of public health over the past century. Despite these successes, there are still many complex disorders (e.g., cancer, HIV, and other emerging infectious diseases) for which effective preventative or therapeutic vaccines have been difficult to develop. This failure can be attributed primarily to our inability to precisely control and modulate the highly complex immune memory response, specifically the cellular response. Dominated by B and T cell maturation and function, the cellular response is primarily initiated by potent immunostimulators and antigens. Efficient and targeted delivery of these immunomodulatory and immunostimulatory molecules to appropriate cells is key to successful development of next generation vaccine formulations. Over the past decade, particulate carriers have emerged as an attractive means for enhancing the delivery efficacy and potency of vaccines and associated immunomodulatory molecules. Specifically, polymer‐based micro and nanoparticles are being extensively studied for a wide variety of applications. In this review, we discuss the immunological fundamentals for developing effective vaccines and how materials and material properties can be exploited to improve these therapies. Particular emphasis is given to polymer‐based particles and how the route of administration of particulate systems affects the phenotype and robustness of an immune response. Comparison of various strategies and recent advancements in the field are discussed along with insights into current limitations and future directions.