z-logo
Premium
Directed Particle Transport via Reconfigurable Fiber Networks
Author(s) -
Cu Katharina,
Steier Anke,
Klaiber Marvin,
Franzreb Matthias,
Lahann Joerg
Publication year - 2022
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202204080
Subject(s) - reconfigurability , materials science , fiber , nanotechnology , analyte , control reconfiguration , particle (ecology) , mass transport , optoelectronics , computer science , composite material , telecommunications , physics , engineering physics , chemistry , embedded system , oceanography , geology
Mass transport limitations of particulates within conventional microanalytical systems are often cited as the root cause for low sensitivity but can be overcome by directed analyte transport, such as via biomolecular motors or gradient surfaces. An ongoing challenge is the development of materials that are passive in nature (i.e., no external power source required), but can reconfigure to perform work, such as transporting particle‐based analytes. Mimicking biology's concepts of autonomous and reconfigurable materials systems, like the Drosera capensis leaf, reconfigurable fiber networks that effectively concentrate particulates within a localized spot that can act as a detection patch are developed. These networks, prepared by electrohydrodynamic co‐jetting, draw their reconfigurability from a bicompartmental fiber architecture. Upon exposure to neutral pH, a differential swelling of both fiber compartments gives rise to interfacial tension and ultimately results in shape reconfiguration of the fiber network. Compared to free particles, the reconfigurable fiber networks display a 57‐fold increase in analyte detectability, average transport efficiencies of 91.9 ± 2.4%, and separation selectivity between different surface properties of 95 ± 3%. The integration of biomimetic materials into microanalytical systems, exemplified in this study, offers ample opportunities to design novel and effective detection schemes that circumvent mass transport limitations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here