Premium
Conversion of 2D MXene to Multi‐Low‐Dimensional GerMXene Superlattice Heterostructure
Author(s) -
Rafieerad Alireza,
Amiri Ahmad,
Yan Weiang,
Eshghi Hossein,
Dhingra Sanjiv
Publication year - 2022
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202108495
Subject(s) - heterojunction , materials science , superlattice , nanotechnology , quantum dot , titanium carbide , titanium , optoelectronics , metallurgy
Integration of 2D structures into other low‐dimensional materials results in the development of distinct van der Waals heterostructures (vdWHSs) with enhanced properties. However, obtaining 2D–1D–0D vdWHSs of technologically useful next generation materials, transition‐metal carbide MXene and monoelemental Xene nanosheets in a single superlattice heterostructure is still challenging. Here, the fabrication of a new multidimensional superlattice heterostructure “GerMXene” from exfoliated M 3 X 2 T x MXene and hydrogenated germanane (GeH) crystals, is reported. Direct experimental evidence for conversion of hydrothermally activated titanium carbide MXene (A‐MXene) to GerMXene heterostructure through the rapid and spontaneous formation of titanium germanide (TiGe 2 and Ti 6 Ge 5 ) bonds, is provided. The obtained GerMXene heterostructure possesses enhanced surface properties, aqueous dispersibility, and Dirac signature of embedded GeH nanosheets as well as quantum dots. GerMXene exhibits functional bioactivity, electrical conductivity, and negative surface charge, paving ways for its applications in biomedical field, electronics, and energy storage.