Premium
FeNC Electrocatalysts with Densely Accessible FeN 4 Sites for Efficient Oxygen Reduction Reaction
Author(s) -
Zhou Yazhou,
Chen Guangbo,
Wang Qing,
Wang Ding,
Tao Xiafang,
Zhang Tierui,
Feng Xinliang,
Müllen Klaus
Publication year - 2021
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202102420
Subject(s) - zeolitic imidazolate framework , reversible hydrogen electrode , materials science , melamine , proton exchange membrane fuel cell , electrolyte , carbon fibers , molecule , nitrogen , oxygen , inorganic chemistry , catalysis , electrode , metal organic framework , chemistry , organic chemistry , adsorption , reference electrode , composite number , composite material
The development of iron and nitrogen co‐doped carbon (FeNC) electrocatalysts for the oxygen reduction reaction (ORR) in proton‐exchange membrane fuel cells (PEMFCs) is a grand challenge due to the low density of accessible FeN 4 sites. Here, an in situ trapping strategy using nitrogen‐rich molecules (e.g., melamine, MA) is demonstrated to enhance the amount of accessible FeN 4 sites in FeNC electrocatalysts. The melamine molecules can participate in the coordination of Fe ions in zeolitic imidazolate frameworks to form FeN 6 sites within precursors. These FeN 6 sites are then converted into atomically dispersed FeN 4 sites during a pyrolytic process. Remarkably, the FeNC/MA exhibits a high single‐atom Fe content (3.5 wt.%), a large surface area (1160 m 2 g −1 ), and a high density of accessible FeN 4 sites (45.7 × 10 19 sites g −1 ). As a result, FeNC/MA shows a much enhanced ORR activity with a half‐wave potential of 0.83 V (vs the reversible hydrogen electrode) in a 0.5 m H 2 SO 4 electrolyte solution and a good performance in a PEMFC system with an activity of 80 mA cm −2 at 0.8 V under 1.0 bar H 2 /air. This work offers a promising approach toward high‐performance carbon‐based ORR electrocatalysts.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom