Premium
Interfacial Engineering of Bifunctional Niobium (V)‐Based Heterostructure Nanosheet Toward High Efficiency Lean‐Electrolyte Lithium–Sulfur Full Batteries
Author(s) -
Shi Haodong,
Qin Jieqiong,
Lu Pengfei,
Dong Cong,
He Jian,
Chou Xiujian,
Das Pratteek,
Wang Jiemin,
Zhang Liangzhu,
Wu ZhongShuai
Publication year - 2021
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202102314
Subject(s) - polysulfide , materials science , electrolyte , nanosheet , anode , sulfur , electrochemistry , chemical engineering , cathode , bifunctional , electrode , inorganic chemistry , nanotechnology , catalysis , metallurgy , chemistry , organic chemistry , engineering
High‐efficiency lithium–sulfur (Li–S) batteries depend on an advanced electrode structure that can attain high sulfur utilization at lean‐electrolyte conditions and minimum amount of lithium. Herein, a twinborn holey Nb 4 N 5 –Nb 2 O 5 heterostructure is designed as a dual‐functional host for both redox–kinetics–accelerated sulfur cathode and dendrite‐inhibited lithium anode simultaneously for long‐cycling and lean‐electrolyte Li–S full batteries. Benefiting from the accelerative polysulfides anchoring–diffusion–converting efficiency of Nb 4 N 5 –Nb 2 O 5 , polysulfide‐shutting is significantly alleviated. Meanwhile, the lithiophilic nature of holey Nb 4 N 5 –Nb 2 O 5 is applied as an ion‐redistributor for homogeneous Li‐ion deposition. Taking advantage of these merits, the Li–S full batteries present excellent electrochemical properties, including a minimum capacity decay rate of 0.025% per cycle, and a high areal capacity of 5.0 mAh cm −2 at sulfur loading of 6.9 mg cm −2 , corresponding to negative to positive capacity ratio of 2.4:1 and electrolyte to sulfur ratio of 5.1 µL mg −1 . Therefore, this work paves a new avenue for boosting high‐performances Li–S batteries toward practical applications.