z-logo
Premium
Reactive Oxygenated Species Generated on Iodide‐Doped BiVO 4 /BaTiO 3 Heterostructures with Ag/Cu Nanoparticles by Coupled Piezophototronic Effect and Plasmonic Excitation
Author(s) -
Zhou Xiaofeng,
Shen Bo,
Zhai Jiwei,
Hedin Niklas
Publication year - 2021
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202009594
Subject(s) - heterojunction , photocatalysis , materials science , iodide , nanoparticle , doping , catalysis , radical , photochemistry , photoexcitation , nanotechnology , inorganic chemistry , optoelectronics , excitation , chemistry , organic chemistry , engineering , electrical engineering
An effective generation of reactive oxygen species (ROS) is of interest from the perspective of environmental technology and industrial chemistry, and here piezocatalysis and photocatalysis using heterostructures based on iodide‐doped BiVO 4 /BaTiO 3 with photodeposited Ag or Cu nanoparticles (BiVO 4 :I/BTO‐Ag or BiVO 4 :I/BTO‐Cu) is studied. The generation rates of •OH and •O 2 − radicals over BiVO 4 :I/BTO‐Ag during piezophotocatalysis are 371 and 292 µmol g −1 h −1 , respectively, and significantly higher than those of sole piezocatalysis and photocatalysis. These rates are among the highest reported for the production of free radicals with the piezophototronic effect. Among the catalysts, BiVO 4 :I/BTO shows the highest reactivity for the production of H 2 O 2 in piezocatalysis (with a concentration of 468 µ m after 100 min of irradiation, and still constantly increasing). On BiVO 4 :I/BTO‐Ag and BiVO 4 :I/BTO‐Cu, it seems that redundant electrons and holes had reacted effectively with the generated H 2 O 2 and in turn had reduced their activities; however, the amounts of H 2 O 2 that are formed on BiVO 4 :I/BTO‐Ag or BiVO 4 :I/BTO‐Cu under piezophotocatalysis are superior to those of individual piezocatalysis and photocatalysis. A piezophototronic coupling via an ultrasound‐mediated and piezoelectric‐based polarization field and photoexcitation accounting for the enhanced photocatalytic activity of the iodine‐doped heterostructures with plasmonically sized Ag or Cu nanoparticles is suggested.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here