Premium
Hollow NiSe Nanocrystals Heterogenized with Carbon Nanotubes for Efficient Electrocatalytic Methanol Upgrading to Boost Hydrogen Co‐Production
Author(s) -
Zhao Bin,
Liu Jianwen,
Xu Chenyu,
Feng Renfei,
Sui Pengfei,
Wang Lei,
Zhang Jiujun,
Luo JingLi,
Fu XianZhu
Publication year - 2021
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202008812
Subject(s) - materials science , chemical engineering , hydrogen production , catalysis , carbon nanotube , electrocatalyst , formate , methanol , oxygen evolution , hydrogen , x ray photoelectron spectroscopy , electrolysis , faraday efficiency , nanotechnology , electrochemistry , organic chemistry , chemistry , electrode , engineering , electrolyte
Abstract Electro‐oxidative organic upgrading, as an ideal alternative to sluggish oxygen evolution reaction (OER) performance, can effectively decrease energy consumption to boost hydrogen evolution reaction (HER) performance. However, developing highly active electrocatalysts for long‐term durable organic upgrading with high selectivity at large and steady current density remains challenging. Herein, hollow NiSe nanocrystals heterogenized with carbon nanotubes (h‐NiSe/CNTs) are fabricated via a facile one‐pot approach. The highly dispersed h‐NiSe/CNTs 3D network can efficiently facilitate rapid mass/electron diffusion, thus achieving highly active and long‐term stable electrocatalysis for catalyzing methanol to value‐added formate at high and steady current density (≈345 mA cm −2 ) with high Faradaic efficiency (>95%). This reaction replaces sluggish OER performance to reduce the energy consumption for boosting H 2 generation by six times. The critical active species and methanol activation mechanism are systematically studied using X‐ray photoelectron spectroscopy, X‐ray absorption fine structure analysis, in situ Raman, and density functional theory calculations, indicating that the non‐ignorable SeO x collaborated with in situ formed NiOOH species can synergistically modulate the d band center to achieve an optimal adsorption for methanol selective oxidation and suppress the further oxidation to CO 2 , thus leading to active and stable electrolysis for producing value‐added formate with high selectivity and co‐generating H 2 with less energy consumption.