Premium
Chemically Stable, Strongly Adhesive Sealant Patch for Intestinal Anastomotic Leakage Prevention
Author(s) -
Anthis Alexandre H. C.,
Hu Xueqian,
Matter Martin T.,
Neuer Anna L.,
Wei Kongchang,
Schlegel Andrea A.,
Starsich Fabian H.L.,
Herrmann Inge K.
Publication year - 2021
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202007099
Subject(s) - sealant , materials science , adhesive , fibrin , leak , fibrin tissue adhesive , adhesion , leakage (economics) , biomedical engineering , composite material , surgery , medicine , layer (electronics) , environmental engineering , economics , engineering , immunology , macroeconomics
Intestinal anastomotic leaking, which involves the discharge of chemically aggressive, non‐sterile fluids into the abdomen, remains one of the most dreaded postoperative complications of abdominal surgery. Depending on the site and the patient condition, incidence ranging between 4% and 21% and mortality rates up to 27% are reported. Currently available surgical sealants only poorly address the issue, especially since most commonly used fibrin glues fail due to insufficient adhesion and chemical instability. Here, a chemically highly resistive, leak‐tight, and mucoadhesive hydrogel sealant, which is grafted on the surface of the intestinal wall using a mutually interpenetrating network that traverses hydrogel and tissue is presented. In contrast to clinically used fibrin‐based sealants (including Tachosil), the developed adhesive poly(acrylamide‐methyl acrylate‐acrylic acid) patch does not degrade and exhibits strong tissue adhesion even when exposed to intestinal fluid. The biocompatible hydrogel patch effectively seals anastomotic leaks in ex vivo intestinal models, greatly surpassing commercial sealants (time to patch‐failure >24 h compared to 5 min for commonly used Tachosil). Importantly, the developed adhesive patch paves the way for the application of both mechanically and chemically robust sealants suitable for the treatment and prevention of intestinal leaks.