Premium
Improved Quantum Yield and Excellent Luminescence Stability of Europium‐Incorporated Polymeric Hydrogen‐Bonded Heptazine Frameworks Due to an Efficient Hydrogen‐Bonding Effect
Author(s) -
Yang Chaoqing,
Folens Karel,
Du Laing Gijs,
Artizzu Flavia,
Van Deun Rik
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202003656
Subject(s) - materials science , quantum yield , europium , luminescence , photoluminescence , lanthanide , quenching (fluorescence) , photochemistry , hydrogen bond , thermal stability , chemical engineering , ion , fluorescence , chemistry , molecule , organic chemistry , optoelectronics , physics , quantum mechanics , engineering
Two of the most persistent challenges for the high‐end application of luminescent lanthanide (Ln) compounds are a low quantum yield and luminescence quenching caused by a liquid medium. In this work, a type of polymeric hydrogen‐bonded heptazine framework is developed incorporating trivalent europium ions (P‐HHF‐Eu) via a low‐cost and facile low‐temperature thermal condensation reaction. Structural characterization clearly reveals that the solid‐phase pyrolyzation reaction results in the formation of P‐HHF‐Eu. Using time‐resolved and steady state photoluminescence (PL) spectroscopies, the photophysics and photochemistry of P‐HHF‐Eu at different hydration degrees are investigated and the role of hydrogen bonding in the significant enhancement of the emission properties is demonstrated. Furthermore, the P‐HHF‐Eu particles suspended in polyvinyl alcohol hydrogel exhibit excellent luminescence stability with a high PL quantum yield of up to ≈46% and wavelength responsive color‐tunable emission, which holds potential for security applications.