Premium
Ultrastrong Hierarchical Porous Materials via Colloidal Assembly and Oxidation of Metal Particles
Author(s) -
Huo Wenlong,
Zhang Xiaoyan,
Tervoort Elena,
Gantenbein Silvan,
Yang Jinlong,
Studart André R.
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202003550
Subject(s) - materials science , porosity , microscale chemistry , fabrication , composite material , sintering , compressive strength , thermal , ceramic , porous medium , nanotechnology , medicine , alternative medicine , mathematics , mathematics education , physics , pathology , meteorology
Porous materials are useful as lightweight structures, bone substitutes, and thermal insulators, but exhibit poor mechanical properties compared to their dense counterparts. Biological materials such as bone and bamboo are able to circumvent this trade‐off between porosity and mechanical performance by combining pores at multiple length scales. Inspired by these biological architectures, a manufacturing platform that allows for the fabrication of Al 2 O 3 foams and Al 2 O 3 /Al composites with hierarchical porosity and enhanced mechanical properties is developed. Macroscale pores are formed through the assembly of aluminum particles around templating air bubbles in wet foams, whereas the thermal oxidation of the metal particles above 800 °C generates porosity at the micrometer scale. After elucidating the mechanism of pore formation under different sintering conditions at the microscale, the mechanical performance of the resulting hierarchical foams using compression experiments and finite element simulations is evaluated. Porous materials manufactured via this simple approach are found to reach unparalleled mechanical properties with near‐zero sintering shrinkage and minimum loss in mechanical strength. The ability to produce macroscopic objects with ultrahigh strength at porosities up to 95% makes this an attractive manufacturing technology for the fabrication of high‐performance lightweight structures or advanced thermal and acoustic insulators.