z-logo
Premium
Strain‐Engineering of Contact Energy Barriers and Photoresponse Behaviors in Monolayer MoS 2 Flexible Devices
Author(s) -
Pak Sangyeon,
Lee Juwon,
Jang ARang,
Kim Seungje,
Park KyungHo,
Sohn Jung Inn,
Cha SeungNam
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202002023
Subject(s) - materials science , monolayer , kelvin probe force microscope , optoelectronics , flexible electronics , strain engineering , electrode , strain (injury) , electron mobility , tensile strain , photodetector , nanotechnology , electrical contacts , ultimate tensile strength , atomic force microscopy , silicon , composite material , medicine , chemistry
Flexible electronics and optoelectronics based on monolayered, semiconducting transition metal dichalcogenides (TMDCs) channel have recently received attention as the 2D structure possess superior mechanical, optical, and electrical properties. However, there is a lack of understanding of strain‐dependent electrical and photoelectrical properties in the electrode‐TMDC channel system. Here, two‐terminal flexible device is fabricated and strain‐engineered contact barrier modulation between monolayer MoS 2 channel and Au electrode is shown. It is found experimentally through in situ strain electrical and kelvin probe force microscope measurements that tensile strain lowers the contact energy barriers between MoS 2 and Au, in which the changes in the contact barriers is attributed to the strain‐induced increase of the electron affinity in MoS 2 monolayer. Furthermore, the strain‐induced barrier modulation is also shown to affect photoresponse behaviors in a MoS 2 flexible photodetectors through bending of energy bands that affect photogenerated carrier transport and electron‐hole recombination. These findings present important pathway toward designing flexible devices based on 2D TMDCs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here