z-logo
Premium
Enhancing Chemotherapy of p53‐Mutated Cancer through Ubiquitination‐Dependent Proteasomal Degradation of Mutant p53 Proteins by Engineered ZnFe‐4 Nanoparticles
Author(s) -
Qian Jieying,
Zhang Wenbin,
Wei Pengfei,
Yao Guangyu,
Yi Tianxiang,
Zhang Hao,
Ding He,
Huang Xiaowan,
Wang Meimei,
Song Yang,
Zhong Suqin,
Yang Lijiao,
Gao Jinhao,
Zhou Zijian,
Wen Longping,
Zhang Yunjiao
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202001994
Subject(s) - materials science , cancer research , internalization , mutant , degradation (telecommunications) , microbiology and biotechnology , intracellular , cell , biophysics , chemistry , biology , biochemistry , gene , telecommunications , computer science
A significant percentage of human cancers harbor missense mutations in the TP53 gene and express highly stabilized mutant p53 protein (mutp53) with tumor‐promoting gain‐of‐function (GOF) properties. Inducing mutp53 degradation is a viable precision anti‐tumor therapeutic strategy. Based on the previously reported finding that a zinc‐curcumin compound induced mutp53 degradation, a series of ZnFe nanoparticles (ZnFe NPs) are synthesized and it is found that ZnFe‐4, with an Zn:Fe ratio of 1:2, exhibits outstanding mutp53‐degrading capability. ZnFe‐4 induced ubiquitination‐mediated proteasomal degradation of several different mutp53 species, but not the wild‐type p53 protein. Cellular internalization, intracellular Zn++ elevation and increased ROS are all necessary for ZnFe‐4‐induced mutp53 degradation. Degradation of mutp53 by ZnFe‐4, abrogated mutp53‐manifested GOF, leading to increased p21 expression, cell cycle arrest, reduced cell proliferation and cell migration, and cell demise. ZnFe‐4 also sensitized to cisplatin‐elicited killing in p53 S241F ES‐2 ovarian cancer cells, and dramatically improved the therapeutic efficacy of cisplatin in a subcutaneous ES‐2 tumor model. The potential clinical utility of ZnFe‐4 is further demonstrated in an orthotopically‐implanted p53 Y220C patient‐derived xenograft (PDX) breast cancer model. ZnFe‐4 is the first reported mutp53‐degrading nanomaterial, and further materials engineering may lead to the development of zinc‐based nanoparticles with minimal toxicity and maximized mutp53‐degrading capability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here