Premium
Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites
Author(s) -
Zhang Song,
Cheng YuHsuan,
Galuska Luke,
Roy Anirban,
Lorenz Matthias,
Chen Beibei,
Luo Shaochuan,
Li YenTing,
Hung ChihChien,
Qian Zhiyuan,
St. Onge Peter Blake Joseph,
Mason Gage T.,
Cowen Lewis,
Zhou Dongshan,
Nazarenko Sergei I.,
Storey Robson F.,
Schroeder Bob C.,
RondeauGagné Simon,
Chiu YuCheng,
Gu Xiaodan
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202000663
Subject(s) - materials science , composite material , elastomer , natural rubber , self healing , composite number , polymer , tear resistance , elastic modulus , electronics , deformation (meteorology) , fracture (geology) , fracture mechanics , chemistry , pathology , medicine , alternative medicine
Mechanical failure of π‐conjugated polymer thin films is unavoidable under cyclic loading conditions, due to intrinsic defects and poor resistance to crack propagation. Here, the first tear‐resistant and room‐temperature self‐healable semiconducting composite is presented, consisting of conjugated polymers and butyl rubber elastomers. This new composite displays both a record‐low elastic modulus (<1 MPa) and ultrahigh deformability with fracture strain above 800%. More importantly, failure behavior is not sensitive to precut notches under deformation. Autonomous self‐healing at room temperature, both mechanical and electronic, is demonstrated through the physical contact of two separate films. The composite film also shows device stability in the ambient environment over 5 months due to much‐improved barrier property to both oxygen and water. Butyl rubber is broadly applicable to various p‐type and n‐type semiconducting polymers for fabricating self‐healable electronics to provide new resilient electronics that mimic the tear resistance and healable property of human skin.