Premium
Janus‐Structured Co‐Ti 3 C 2 MXene Quantum Dots as a Schottky Catalyst for High‐Performance Photoelectrochemical Water Oxidation
Author(s) -
Tang Rui,
Zhou Shujie,
Li Caixia,
Chen Ran,
Zhang Luyuan,
Zhang Zhiwei,
Yin Longwei
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.202000637
Subject(s) - materials science , quantum dot , cobalt , schottky barrier , water splitting , visible spectrum , photocatalysis , catalysis , optoelectronics , nanotechnology , chemical engineering , biochemistry , chemistry , diode , engineering , metallurgy
MXene materials have attracted increasing attention in electrochemical energy‐storage applications while MXene also becomes photo‐active at the quantum dot scale, making it an alternative for solar‐energy‐conversion devices. A Janus‐structured cobalt‐nanoparticle‐coupled Ti 3 C 2 MXene quantum dot (Co‐MQD) Schottky catalyst with tunable cobalt‐loading content serving as a photoelectrochemical water oxidation photoanode is demonstrated. The introduction of cobalt triggers concomitant surface‐plasmon effects and acts as a water oxidation center, enabling visible‐light harvesting capability and improving surface reaction kinetics. Most importantly, due to the rectifying effects of Co‐MQD Schottky junctions, photogenerated carrier separation/injection efficiency can be fundamentally facilitated. Specifically, Co‐MQD‐48 exhibits both superior photoelectrocatalysis (2.99 mA cm −2 at 1.23 V vs RHE) and charge migration performance (87.56%), which corresponds to 194% and 236% improvement compared with MQD. Furthermore, excellent photostability can be achieved with less than 6.6% loss for 10 h cycling reaction. This fills in gaps in MXene material research in photoelectrocatalysis and allows for the extension of MXene into optical‐related fields.