z-logo
Premium
Engineering Facets and Oxygen Vacancies over Hematite Single Crystal for Intensified Electrocatalytic H 2 O 2 Production
Author(s) -
Gao Ruijie,
Pan Lun,
Li Zhengwen,
Shi Chengxiang,
Yao Yunduo,
Zhang Xiangwen,
Zou JiJun
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201910539
Subject(s) - catalysis , faraday efficiency , electrocatalyst , reversible hydrogen electrode , oxygen , materials science , oxygen evolution , protonation , hydrogen peroxide , selectivity , inorganic chemistry , electrolyte , chemical engineering , ion , chemistry , electrode , electrochemistry , organic chemistry , reference electrode , engineering
Hydrogen peroxide is a highly valuable chemical, and electrocatalytic oxygen reduction towards H 2 O 2 offers an alternative method for safe on‐site applications. Generally, low‐cost hematite (α‐Fe 2 O 3 ) is not recognized as an efficient electrocatalyst because of its inert nature, but it is herein reported that α‐Fe 2 O 3 can be endowed with high catalytic activity and selectivity via the engineering of facets and oxygen vacancies. Density‐functional theory (DFT)calculations predict that the {001} facet is intrinsically selective for H 2 O 2 production, and that oxygen vacancies can trigger the high activity, providing sites for O 2 adsorption and protonation, stabilizing the *OOH intermediate, and preventing cleavage of the OO bond. The synthesized oxygen‐defective α‐Fe 2 O 3 single crystals with exposed {001} facets achieve high selectivities for H 2 O 2 of >90%, >88%, and >95% in weakly acidic, neutral, and alkaline electrolytes, respectively, and the H 2 O 2 production rate reaches 454 mmol g −1 cat h −1 at 0.1 V versus RHE under alkaline conditions. In an anion exchange membrane fuel cell, a maximum H 2 O 2 production of 546.8 mmol L −1 with a high Faradaic efficiency of 80.5% is achieved. Thus, this work details a low‐cost catalyst feasible for H 2 O 2 synthesis, and highlights the feasibility of theoretical catalyst design for practical applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here