z-logo
Premium
Photosynthetic Biohybrid Nanoswimmers System to Alleviate Tumor Hypoxia for FL/PA/MR Imaging‐Guided Enhanced Radio‐Photodynamic Synergetic Therapy
Author(s) -
Zhong Danni,
Li Wanlin,
Qi Yuchen,
He Jian,
Zhou Min
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201910395
Subject(s) - photodynamic therapy , in vivo , magnetic resonance imaging , materials science , tumor hypoxia , tumor microenvironment , cancer research , photothermal therapy , radiation therapy , nanotechnology , biology , chemistry , medicine , tumor cells , radiology , organic chemistry , microbiology and biotechnology
Biohybrid microswimmers have recently shown to be able to actively perform in targeted delivery and in vitro biomedical applications. However, more envisioned functionalities of the microswimmers aimed at in vivo treatments are still challenging. A photosynthetic biohybrid nanoswimmers system (PBNs), magnetic engineered bacteria‐ Spirulina platensis , is utilized for tumor‐targeted imaging and therapy. The engineered PBNs is fabricated by superparamagnetic magnetite (Fe 3 O 4 NPs) via a dip‐coating process, enabling its tumor targeting ability and magnetic resonance imaging property after intravenous injection. It is found that the PBNs can be used as oxygenerator for in situ O 2 generations in hypoxic solid tumors through photosynthesis, modulating the tumor microenvironment (TME), thus improving the effectiveness of radiotherapy (RT). Furthermore, the innate chlorophyll released from the RT‐treated PBNs, as a photosensitizer, can produce cytotoxic reactive oxygen species under laser irradiation to achieve photodynamic therapy. Excellent tumor inhibition can be realized by the combined multimodal therapies. The PBNs also possesses capacities of chlorophyll‐based fluorescence and photoacoustic imaging, which can monitor the tumor therapy and tumor TME environment. These intriguing properties of the PBNs provide a promising microrobotic platform for TME hypoxic modulation and cancer theranostic applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here