z-logo
Premium
Apatite‐Binding Nanoparticulate Agonist of Hedgehog Signaling for Bone Repair
Author(s) -
Zhang Xiao,
Fan Jiabing,
Lee ChungSung,
Kim Soyon,
Chen Chen,
Aghaloo Tara,
Lee Min
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201909218
Subject(s) - smoothened , hedgehog signaling pathway , agonist , sonic hedgehog , microbiology and biotechnology , hedgehog , patched , materials science , signal transduction , chemistry , biology , receptor , biochemistry
The hedgehog signaling pathway plays a critical role in bone development and regeneration. Applications of hedgehog morphogens or small molecular agonists are of interest in bone repair but constrained by low stability, high dose requirement, and nonspecific targeting in vivo. Herein, a nanoparticulate agonist as a new type of hedgehog signaling activator is developed for efficacious bone healing. The shell of nanoparticulate agonist consists of palmitic acid and oxysterol, which could modify hedgehog function and bind with the smoothened receptor to positively modulate hedgehog signaling. Meanwhile, the core is assembled with the sonic hedgehog gene/polyethyleneimine complex, which could synergistically enhance hedgehog signaling with oxysterol constituents. Moreover, alendronate is introduced into the nanoparticulate agonist to bind with hydroxyapatite for potential bone tissue targeting. Lastly, the nanoparticulate agonist surface is decorated with the guanidine group to overcome cell membrane barriers. The created multifunctional nanoparticulate agonist is successfully integrated onto apatite‐coated 3D scaffolds and demonstrates greatly improved osteogenesis in vitro and calvarial bone healing. This work suggests a novel biomaterial design to specifically promote hedgehog signaling for the treatment of bone defects.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom