z-logo
Premium
δ‐CsPbI 3 Intermediate Phase Growth Assisted Sequential Deposition Boosts Stable and High‐Efficiency Triple Cation Perovskite Solar Cells
Author(s) -
Wang Shaofu,
Jin Junjun,
Qi Yuyang,
Liu Pei,
Xia Yu,
Jiang Yun,
He RongXiang,
Chen Bolei,
Liu Yumin,
Zhao XingZhong
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201908343
Subject(s) - perovskite (structure) , materials science , energy conversion efficiency , caesium , deposition (geology) , phase (matter) , chemical engineering , crystallization , grain size , photovoltaic system , band gap , grain growth , nanotechnology , optoelectronics , inorganic chemistry , composite material , chemistry , organic chemistry , electrical engineering , paleontology , sediment , engineering , biology
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI 3 intermediate phase growth (CsPbI 3 ‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI 3 ) 1– x (MAPbBr 3 ) x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI 3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here