Premium
Advances and Challenges in White Light‐Emitting Electrochemical Cells
Author(s) -
Fresta Elisa,
Costa Rubén D.
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201908176
Subject(s) - materials science , brightness , color rendering index , optoelectronics , dipole , electrochemical cell , nanotechnology , electrochemistry , white light , optics , chemistry , physics , organic chemistry , electrode
Since the birth of light‐emitting electrochemical cells (LECs) in 1995, white LECs (WLECs) still represent a milestone. To date, over 50 contributions have been reported, presenting record WLECs with brightness of up to 10 000 cd m −2 , efficiencies of >10 cd A −1 , and excellent color rendering index >90 in different contributions. This is achieved following three main strategies focused on modifying: i) the design of the emitters, that is, emissive aggregates, multiemissive mechanism, multifluorophoric emitters; ii) the active layer composition, that is, host–guest, multilayers, exciplex‐ and electroplex‐like emitting species systems; and iii) the device architecture, that is, tandem, photoactive filters, and microcavity/interfacial dipole effects. Herein, all of them are comprehensively discussed with respect to the above strategies in the frame of the type of emitters employed. Overall, this work highlights both the advances and challenges of the WLEC field.