z-logo
Premium
Droplets Crawling on Peristome‐Mimetic Surfaces
Author(s) -
Zhou Shan,
Yu Cunlong,
Li Chuxin,
Jiang Lei,
Dong Zhichao
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201908066
Subject(s) - ostwald ripening , materials science , microfluidics , coalescence (physics) , nucleation , nanotechnology , astrobiology , chemistry , physics , organic chemistry
Controlling the mobility of liquids along surfaces is widely exploited in various technologies to achieve self‐lubrication, phase‐change heat transfer, and microfluidics. Despite commendable progress in directional liquid transport on peristome‐mimetic surfaces, liquid merely spreads directionally with a wetted trail remaining. It is a challenge to achieve directional contracting of spreading liquid at the rear side and ultimately unidirectional motion in bulk from one site to another. Here it is shown that liquids resting on the peristome‐mimetic surfaces can crawl directionally and rapidly in an inchworms‐like way under the action of sudden spontaneous bubbles levitation. Vacuuming or chemical reaction induces sudden nucleation, growth, coalescence (Ostwald ripening process), and rupture of bubbles in the asymmetric microcavities of the peristome‐mimetic surface with directional overpressure beneath the liquid, resulting in the guided contracting and spreading of the liquid. Bubbles regulate this new mode of liquid directional motion. The strategy offers opportunities for liquids directional motion for various applications, such as in microfluidic devices, oil–water separation, and water collection systems.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here