Premium
Out‐of‐Plane Polarization in Bent Graphene‐Like Zinc Oxide and Nanogenerator Applications
Author(s) -
Tan Dan,
Willatzen Morten,
Wang Zhong Lin
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201907885
Subject(s) - materials science , graphene , perpendicular , piezoelectricity , nanogenerator , bent molecular geometry , polarization (electrochemistry) , condensed matter physics , optoelectronics , nanotechnology , composite material , physics , chemistry , geometry , mathematics
Highly efficient piezoelectric nanogenerator operation is demonstrated based on dynamic bending of graphene‐like ZnO nanosheets. Energy is harvested by an external resistor by virtue of a strong time‐varying piezoelectric polarization component perpendicular to the graphene‐like ZnO plane. It is shown analytically and verified numerically using molecular dynamics simulations that the 6 ¯ m2 point group of flat graphene‐like ZnO is reduced to monoclinic m symmetry for bent graphene‐like ZnO. The latter symmetry allows for a nonzero and large piezoelectric polarization component perpendicular to the plane of the 2D structure. The numerical results confirm that flexoelectric effects are negligible subject to graphene‐like ZnO bending operation.