Premium
Transparent, Mechanically Strong, Extremely Tough, Self‐Recoverable, Healable Supramolecular Elastomers Facilely Fabricated via Dynamic Hard Domains Design for Multifunctional Applications
Author(s) -
Wang Dong,
Xu JianHua,
Chen JiaoYang,
Hu Po,
Wang Yang,
Jiang Wei,
Fu JiaJun
Publication year - 2020
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201907109
Subject(s) - self healing , materials science , elastomer , toughness , self healing material , supramolecular chemistry , polymer , composite material , mechanical strength , nanotechnology , supramolecular polymers , molecule , medicine , chemistry , alternative medicine , pathology , organic chemistry
The design and synthesis of supramolecular self‐healing polymers with high healing efficiency and excellent integrated mechanical properties is challenging due to conflicting attributes of dynamic self‐healing and mechanical properties. Herein, this study introduces a design concept, that is, “dynamic hard domains,” to balance self‐healing performance, mechanical strength, elastic recovery, and at the same time obtain extreme toughness. The essential features of the dynamic hard domains include: (i) a noncrystallized and loose structure, (ii) low binding energy and high mobility, and (iii) sequential dissociation and rapid rearrangement. Based on this strategy, a simple one‐step polycondensation route is reported to synthesize a transparent polyurethane‐urea supramolecular elastomer (PPGTD‐IDA), which successfully combines decent mechanical strength, extreme toughness, outstanding notch‐sensitiveness, self‐recoverability, and room‐temperature self‐healing. Upon rupture, the PPGTD‐IDA completely restores the mechanical properties within 48 h. Furthermore, the results demonstrate repeatable healing of mechanical properties and prominent antiaging healability. Taking advantages of merits of PPGTD‐IDA, it can be utilized for fabricating impact‐resistant materials for protection of aluminum alloys as well as stretchable and self‐healing conductors, which exhibits unique characteristics such as stable conductivity during stretching (even after healing or with notch), and automatic elimination of the notch during stretching/releasing cycles.