z-logo
Premium
Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/β‐FeOOH Hybrids for Supercapacitors
Author(s) -
Talande Smita V.,
Bakandritsos Aristides,
Jakubec Petr,
Malina Ondřej,
Zbořil Radek,
Tuček Jiři
Publication year - 2019
Publication title -
advanced functional materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.069
H-Index - 322
eISSN - 1616-3028
pISSN - 1616-301X
DOI - 10.1002/adfm.201906998
Subject(s) - materials science , graphene , supercapacitor , energy storage , electrolyte , oxide , nanotechnology , aqueous solution , chemical engineering , coating , electrode , electrochemistry , metallurgy , organic chemistry , power (physics) , chemistry , physics , quantum mechanics , engineering
Supercapacitors are a promising energy storage technology owing to their unparalleled power and lifetime. However, to meet the continuously rising demands of energy storage, they must be equipped with higher energy densities. For this purpose, the seamless integration of metal oxides on carbon matrices, such as iron oxides/oxyhydroxides, has been pursued through hydrothermal, atomic layer and electro‐deposition methods directly on current collectors. Nevertheless, such methods present limited compatibility with commercial paste‐coating processes on the current collectors. Furthermore, iron oxides/oxyhydroxides lack conductivity and are hydrophilic, operating with low‐voltage aqueous electrolytes, limiting their power and energy and requiring corrosion‐resistant H 2 O current collectors. To mitigate these challenges, a seamless and paste‐ready material is successfully developed through a 15 min wet‐chemical method, via the coordination of ultrasmall β‐FeOOH (akaganéite) nanoparticles to the nitrile groups of a covalent graphene derivative. Endowed with graphene‐like impedance response and very high wettability in organic electrolytes, combined high power and energy densities are obtained, with respect to the total mass of both electrode materials and current collectors, overcoming the identified challenges. This offers future prospects for the exploration of alternative molecular handles for improved interfaces and their application in different energy‐storage chemistries.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here